Topological fractal networks introduced by mixed degree distribution
نویسندگان
چکیده
منابع مشابه
Mixed Cumulative Distribution Networks
Directed acyclic graphs (DAGs) are a popular framework to express multivariate probability distributions. Acyclic directed mixed graphs (ADMGs) are generalizations of DAGs that can succinctly capture much richer sets of conditional independencies, and are especially useful in modeling the effects of latent variables implicitly. Unfortunately, there are currently no parameterizations of general ...
متن کاملOn ev-degree and ve-degree topological indices
Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the evdegree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be used as possible tools in QSPR researches . In this paper we d...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Classification of infrastructure networks by neighborhood degree distribution
A common way of classifying network connectivity is the association of the nodal degree distribution to specific probability distribution models. During the last decades, researchers classified many networks using the Poisson or Pareto distributions. Urban infrastructures – like transportation (railways, roads, etc.) and distribution (gas, water, energy, etc.) systems – are peculiar networks st...
متن کاملM-polynomial and degree-based topological indices
Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica A: Statistical Mechanics and its Applications
سال: 2007
ISSN: 0378-4371
DOI: 10.1016/j.physa.2007.02.060